QC + Mapping + Counting (single+paired) - Ref Based RNA Seq - Transcriptomics - GTN
transcriptomics-ref-based/qc-mapping-counting-paired-and-single
Launch in Tutorial Mode
question
galaxy-download Download
galaxy-download Download
flowchart TD 0["ℹ️ Input Collection\nsingle fastqs"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Collection\npaired fastqs"]; style 1 stroke:#2c3143,stroke-width:4px; 2["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"]; style 2 stroke:#2c3143,stroke-width:4px; 3["Cutadapt: remove bad quality bp"]; 0 -->|output| 3; 4["Flatten paired collection for Falco"]; 1 -->|output| 4; 5["Cutadapt"]; 1 -->|output| 5; 6["STAR: map single reads"]; 2 -->|output| 6; 3 -->|out1| 6; 7["Merge fastqs for Falco"]; 4 -->|output| 7; 0 -->|output| 7; 8["Merge Cutadapt reports"]; 5 -->|report| 8; 3 -->|report| 8; 9["STAR: map paired reads"]; 2 -->|output| 9; 5 -->|out_pairs| 9; 10["count reads per gene for SR"]; 6 -->|mapped_reads| 10; 2 -->|output| 10; 11["Falco"]; 7 -->|output| 11; 12["Combine cutadapt results"]; 8 -->|output| 12; cab760db-5c9d-4a3c-b768-998bfbac6b57["Output\nmultiqc_cutadapt_html"]; 12 --> cab760db-5c9d-4a3c-b768-998bfbac6b57; style cab760db-5c9d-4a3c-b768-998bfbac6b57 stroke:#2c3143,stroke-width:4px; 13["Merge STAR logs"]; 9 -->|output_log| 13; 6 -->|output_log| 13; 14["Merge STAR counts"]; 6 -->|reads_per_gene| 14; 9 -->|reads_per_gene| 14; 15["Merge STAR BAM"]; 6 -->|mapped_reads| 15; 9 -->|mapped_reads| 15; 802017f4-fb1a-4243-b50d-2ed46f746f11["Output\nSTAR_BAM"]; 15 --> 802017f4-fb1a-4243-b50d-2ed46f746f11; style 802017f4-fb1a-4243-b50d-2ed46f746f11 stroke:#2c3143,stroke-width:4px; 16["merge coverage unique strand 1"]; 6 -->|signal_unique_str1| 16; 9 -->|signal_unique_str1| 16; 17["merge coverage unique strand 2"]; 6 -->|signal_unique_str2| 17; 9 -->|signal_unique_str2| 17; 18["count fragments per gene for PE"]; 9 -->|mapped_reads| 18; 2 -->|output| 18; 1527b5d7-1681-4934-9d9e-3a5f86ae0fee["Output\nfeatureCounts_gene_length"]; 18 --> 1527b5d7-1681-4934-9d9e-3a5f86ae0fee; style 1527b5d7-1681-4934-9d9e-3a5f86ae0fee stroke:#2c3143,stroke-width:4px; 19["Combine FastQC results"]; 11 -->|text_file| 19; 791893e6-6e65-49fe-b71f-4a7b6482e0ce["Output\nmultiqc_falco_html"]; 19 --> 791893e6-6e65-49fe-b71f-4a7b6482e0ce; style 791893e6-6e65-49fe-b71f-4a7b6482e0ce stroke:#2c3143,stroke-width:4px; 20["Combine STAR Results"]; 13 -->|output| 20; 204e3f6c-6f54-46f0-b07c-1f31113265e7["Output\nmultiqc_star_html"]; 20 --> 204e3f6c-6f54-46f0-b07c-1f31113265e7; style 204e3f6c-6f54-46f0-b07c-1f31113265e7 stroke:#2c3143,stroke-width:4px; 21["🛠️ Subworkflow\ncount STAR"]; style 21 fill:#edd,stroke:#900,stroke-width:4px; 2 -->|output| 21; 14 -->|output| 21; 7b7c698b-4808-4b45-adf1-686f8d273d18["Output\nGene length"]; 21 --> 7b7c698b-4808-4b45-adf1-686f8d273d18; style 7b7c698b-4808-4b45-adf1-686f8d273d18 stroke:#2c3143,stroke-width:4px; 5fee8aff-4023-43f1-a653-f5af5357d798["Output\ncounts_from_star"]; 21 --> 5fee8aff-4023-43f1-a653-f5af5357d798; style 5fee8aff-4023-43f1-a653-f5af5357d798 stroke:#2c3143,stroke-width:4px; bd3388e6-5b45-4fdc-9780-3efd1c34ebf8["Output\ncounts_from_star_sorted"]; 21 --> bd3388e6-5b45-4fdc-9780-3efd1c34ebf8; style bd3388e6-5b45-4fdc-9780-3efd1c34ebf8 stroke:#2c3143,stroke-width:4px; 22["Run JBrowse2 to check BAM"]; 15 -->|output| 22; 2 -->|output| 22; 23["🛠️ Subworkflow\nmore QC"]; style 23 fill:#edd,stroke:#900,stroke-width:4px; 2 -->|output| 23; 15 -->|output| 23; 3ea82568-5698-49a7-88fe-91381070aac2["Output\nmultiqc_dup_html"]; 23 --> 3ea82568-5698-49a7-88fe-91381070aac2; style 3ea82568-5698-49a7-88fe-91381070aac2 stroke:#2c3143,stroke-width:4px; b306cb12-a275-4c6d-b609-47fdc208864b["Output\nmultiqc_reads_per_chrom_html"]; 23 --> b306cb12-a275-4c6d-b609-47fdc208864b; style b306cb12-a275-4c6d-b609-47fdc208864b stroke:#2c3143,stroke-width:4px; 3375d63c-cdc3-4fbb-8a55-6f504c934918["Output\nmultiqc_gene_body_cov_html"]; 23 --> 3375d63c-cdc3-4fbb-8a55-6f504c934918; style 3375d63c-cdc3-4fbb-8a55-6f504c934918 stroke:#2c3143,stroke-width:4px; f2eed352-ca21-4d65-8810-f5a1d3c282b4["Output\nmultiqc_read_distrib_html"]; 23 --> f2eed352-ca21-4d65-8810-f5a1d3c282b4; style f2eed352-ca21-4d65-8810-f5a1d3c282b4 stroke:#2c3143,stroke-width:4px; 24["🛠️ Subworkflow\nDetermine strandness"]; style 24 fill:#edd,stroke:#900,stroke-width:4px; 15 -->|output| 24; 2 -->|output| 24; 16 -->|output| 24; 17 -->|output| 24; 14 -->|output| 24; 9727824a-3eb2-4430-92d1-b3c40c3041d1["Output\npgt"]; 24 --> 9727824a-3eb2-4430-92d1-b3c40c3041d1; style 9727824a-3eb2-4430-92d1-b3c40c3041d1 stroke:#2c3143,stroke-width:4px; 105313d8-e31a-405d-8fcd-cc5fd93275e2["Output\nmultiqc_star_counts_html"]; 24 --> 105313d8-e31a-405d-8fcd-cc5fd93275e2; style 105313d8-e31a-405d-8fcd-cc5fd93275e2 stroke:#2c3143,stroke-width:4px; fb810859-f2d0-43f8-ac7c-5c714c5c6805["Output\ninferexperiment"]; 24 --> fb810859-f2d0-43f8-ac7c-5c714c5c6805; style fb810859-f2d0-43f8-ac7c-5c714c5c6805 stroke:#2c3143,stroke-width:4px; 25["merge counts from featureCounts"]; 10 -->|output_short| 25; 18 -->|output_short| 25; c82388f8-cb09-4fdf-8a0e-03cdad579f37["Output\nfeatureCounts"]; 25 --> c82388f8-cb09-4fdf-8a0e-03cdad579f37; style c82388f8-cb09-4fdf-8a0e-03cdad579f37 stroke:#2c3143,stroke-width:4px; 26["merge featureCounts summary"]; 10 -->|output_summary| 26; 18 -->|output_summary| 26; 27["Sort counts to get gene with highest count on feature Counts"]; 25 -->|output| 27; 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db["Output\nfeatureCounts_sorted"]; 27 --> 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db; style 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db stroke:#2c3143,stroke-width:4px; 28["Combine read asignments statistics"]; 26 -->|output| 28; fc72242a-f23c-4ceb-9a8b-5280343ea5d6["Output\nmultiqc_featureCounts_html"]; 28 --> fc72242a-f23c-4ceb-9a8b-5280343ea5d6; style fc72242a-f23c-4ceb-9a8b-5280343ea5d6 stroke:#2c3143,stroke-width:4px;
Inputs
| Input | Label |
|---|---|
| Input dataset collection | single fastqs |
| Input dataset collection | paired fastqs |
| Input dataset | Drosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz |
Outputs
| From | Output | Label |
|---|---|---|
| toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.27+galaxy4 | MultiQC | Combine cutadapt results |
| __MERGE_COLLECTION__ | Merge collections | Merge STAR BAM |
| toolshed.g2.bx.psu.edu/repos/iuc/featurecounts/featurecounts/2.1.1+galaxy0 | featureCounts | count fragments per gene for PE |
| toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.27+galaxy4 | MultiQC | Combine FastQC results |
| toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.27+galaxy4 | MultiQC | Combine STAR Results |
| count STAR | ||
| more QC | ||
| Determine strandness | ||
| __MERGE_COLLECTION__ | Merge collections | merge counts from featureCounts |
| toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_sort_header_tool/9.5+galaxy2 | Sort | Sort counts to get gene with highest count on feature Counts |
| toolshed.g2.bx.psu.edu/repos/iuc/multiqc/multiqc/1.27+galaxy4 | MultiQC | Combine read asignments statistics |
Tools
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands On: Importing a workflow
- Click on galaxy-workflows-activity Workflows in the Galaxy activity bar (on the left side of the screen, or in the top menu bar of older Galaxy instances). You will see a list of all your workflows
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure:
Video: Importing a workflow from URL
Version History
| Version | Commit | Time | Comments |
|---|---|---|---|
| 12 | de4b69f9e | 2025-11-14 16:23:38 | also update the paired and single workflow |
| 11 | f81845b85 | 2025-01-21 10:07:17 | Use Falco instead of FastQC in ref-based tutorial |
| 10 | 9a19075e2 | 2024-10-18 13:22:04 | Update ref-based workflows |
| 9 | a1251f286 | 2024-07-05 09:38:54 | Removed 'comments' tags |
| 8 | d804d52ac | 2024-07-05 09:22:56 | Updated tools in 'QC + Mapping + Counting (single+paired)' workflow |
| 7 | 41dead43e | 2023-05-02 10:31:07 | add mo orcid to workflows |
| 6 | 36eb5cf82 | 2023-04-28 17:26:00 | update workflows and tests |
| 5 | 8fc9c9026 | 2023-04-25 07:46:15 | add creators and licence to workflows |
| 4 | dc21d9ddb | 2023-04-22 08:29:08 | update images and results, rearrange workflow for part1 |
| 3 | 9921a8623 | 2023-04-21 12:37:10 | Update first part of the tutorial |
| 2 | 4d2f611a6 | 2022-04-28 15:20:51 | subset BAM before gene body coverage |
| 1 | 8bf6877e4 | 2022-04-15 11:16:13 | add workflow for PE and SE in parallel |
For Admins
Installing the workflow tools
wget https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/workflows/qc-mapping-counting-paired-and-single.ga -O workflow.ga workflow-to-tools -w workflow.ga -o tools.yaml shed-tools install -g GALAXY -a API_KEY -t tools.yaml workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows
Download Workflow RO-Crate